BACKPAPER: ALGEBRA III

Please do not consult anyone. You may use the text books or class notes. Please do not use any other resource.

A ring would mean a commutative ring with identity unless specified otherwise.
(1) (20 points) Write down all the abelian groups of order 600 (upto isomorphism).
(2) (20 points) Prove or disprove. Let $A=\mathbb{Z}[x] /\left(x^{2}-1\right), B=\mathbb{Z}[x] /\left(x^{2}+1\right)$ be rings.
(a) A and B are isomorphic as rings.
(b) A and B are isomorphic as \mathbb{Z}-modules.
(3) (20 points) Determine whether the following rings are a PID or a UFD. Justify your answer.
(a) $A=\mathbb{Q}[x, y, z] /\left(5 x-1,3 y^{2}-5 z x\right)$
(b) $B=\mathbb{Z}[x, y, z] /\left(5 x-1,3 y^{2}-5 z x\right)$
(c) $C=\mathbb{Z}[x, y, z] /\left(5 x-1,3 y^{2}-15 z x\right)$
(d) $D=\mathbb{Z}[x, y, z] /(3 x-1, y z-1)$
(4) (20 points) Let R be a PID with a unique maximal ideal m and fraction field K. Let $a \in m$ be a nonzero element. Show that $K=R[1 / a]$.
(5) (20 points) Let $R=\mathbb{C}[x, y]$ be a polynomial ring in two variables over complex number with fraction field K. Let $M=R \oplus(x, y) R \oplus x R \oplus K$ be an R module and N be the R-submodule generated by $\left\{(x, 0,0,0),\left(0,0, x^{3}, 0\right),\left(0,0,0, y^{4}\right)\right\}$. Compute the torsion submodule of M / N and rank of M / N.

